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ABSTRACT
An accurate estimation of organic carbon (OC) in forest ecosystems is essential for understanding 
carbon dynamics and informing climate change mitigation strategies. This study presents a novel, 
explainable machine learning framework to estimate two key carbon pools: carbon sequestration 
in living trees (CSE) and carbon storage in standing deadwood (SDC). The methodology is 
structured into five key steps. First, we extract Gray-Level Co-occurrence Matrix (GLCM) texture 
features from LiDAR-derived canopy height models to quantify spatial heterogeneity in forest 
structure. Second, we integrate these GLCM metrics with vegetation indices (VIs), geomorpholo-
gical variables, and weather data to create six distinct input configurations. Third, we train and 
evaluate teen models on each configuration to assess model performance and feature synergy. 
Fourth, we apply SHapley Additive exPlanations (SHAP) to the three models to transform them into 
an interpretable white-box model, identifying key predictors such as AVG_mean, SD_entropy, and 
SD_homogeneity. Finally, we assess model uncertainty using jackknife resampling and error bar 
analysis. The results indicate that CatBoost and Random Forest models deliver the highest 
performance for OC estimation. This study is the first to apply GLCM features for the joint 
estimation of CSE and SDC at a regional scale and to integrate explainable AI into forest carbon 
modelling. The framework provides a practical, transparent tool for forest managers, policymakers, 
and carbon monitoring systems, supporting high-resolution, scalable, and interpretable OC 
assessments.
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1. Introduction

Forests are essential to the global carbon cycle, playing 
a crucial role in climate regulation by absorbing atmo-
spheric carbon dioxide (CO₂) and storing it as organic 
carbon (OC). Organic carbon is held in various forest 
pools, including live trees, standing deadwood, litter, 
and soil. Globally, forests store approximately 861 giga-
tons (Gt) of carbon—42% in live biomass, 44% in soil, 8% 
in deadwood, and 5% in litter (Pan et al. 2011). This 
carbon sink absorbs an estimated 3.6 Gt C year− 1, off-
setting a significant portion of annual anthropogenic 
emissions, which reached 37 Gt CO₂ in 2022 (Pan et al.  
2024; Rehman and Lal 2023).

The OC in trees can be categorized into two primary 
parts. First, trees absorb atmospheric carbon dioxide 
(CO₂) through photosynthesis and convert it into organic 
compounds used to build their biomass (Schlesinger  
1997). This process, known as carbon sequestration or 
Net Primary Production (NPP), effectively removes CO₂ 

from the atmosphere and stores it in wood, leaves, and 
roots of living plants, reducing atmospheric CO2 concen-
tration (Pan et al. 2011). Second, OC includes the carbon 
stored in lying and standing deadwood (Harmon et al.  
1986). Even after a tree has died, it continues to store the 
carbon it accumulated during its lifetime (Harmon et al.  
1986). The carbon stored in deadwood remains seques-
tered until the tree fully decays, continuing to influence 
the carbon balance of the forest (Lindenmayer, 
Laurance, and Franklin 2012). In particular, broken and 
unbroken snags (i.e. standing deadwood) play a crucial 
role in forest ecosystems not only in the carbon cycle, 
but also in biodiversity conservation, by providing 
important micro-habitats for wildlife, and in nutrient 
cycling, as they gradually decompose (Lindenmayer, 
Laurance, and Franklin 2012). Therefore, accurate esti-
mation of OC sequestered yearly by live trees (CSE) as 
well as carbon stored in standing deadwood (SDC) in 
forests can provide policymakers with valuable insights 
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into the best strategies to address greenhouse gas emis-
sions, contributing to current and future climate change 
mitigation (Dai et al. 2021; Konda, Giri, and Mandla  
2017).

Estimating OC in forest ecosystems has traditionally 
relied on two primary approaches: field-based measure-
ments and ecosystem modelling. Field methods, such as 
eddy covariance techniques (Konda, Giri, and Mandla  
2017), provide accurate, direct measurements of carbon 
stocks and fluxes. These approaches are valuable for 
calibration and validation but are often limited by their 
high cost, logistical complexity, and restricted spatial 
and temporal coverage (Masera et al. 2003). On the 
other hand, ecosystem models – such as the CENTURY 
model (Yona et al. 2020) and RothC model (Achard et al.  
2012) – simulate carbon cycling processes over time, 
incorporating factors like decomposition, respiration, 
and biomass accumulation. While these models offer 
insights into long-term carbon dynamics, they typically 
require extensive input data and are highly sensitive to 
parameter uncertainties and assumptions about forest 
processes (Masera et al. 2003). As a result, despite their 
scientific robustness, both field-based and modelling 
approaches face practical challenges when applied to 
large-scale or repeated OC assessments, especially under 
varying environmental and management conditions.

Recently, remote sensing has gained significant 
importance as a tool for estimating and mapping forest 
biomass, and it is also widely acknowledged as an effec-
tive means to monitor sustainability in forestry (Estoque  
2020; Fardusi, Chianucci, and Barbati 2017). This techni-
que involves the use of satellites, aircraft, or drones to 
observe and analyse qualitative and quantitative char-
acteristics of different ecosystems from a distance (U.S. 
Geological Survey 2023). Optical sensors, radar, and 
LiDAR systems are the main technologies employed for 
this purpose (Zhao et al. 2016). Additionally, remote 
sensing texture features, such as those derived from 
image texture analysis techniques, contribute to the 
comprehensive understanding of forest ecosystems 
and aid in tasks including species classification and habi-
tat mapping (Zhou and Feng 2023). Among the estab-
lished techniques for remote sensing texture feature 
processing, the Gray-Level Co-occurrence Matrix 
(GLCM) (Haralick, Shanmugam, and Dinstein 1973) 
stands as a cornerstone. In essence, GLCM quantifies 
spatial relationships between pixel values in an image, 
providing insights into texture characteristics (Haralick, 
Shanmugam, and Dinstein 1973). By analysing the fre-
quency of pixel pairs with specific intensity values occur-
ring at specified spatial relationships, GLCM unveils 
intricate texture patterns within remote sensing ima-
gery. This method finds extensive application in diverse 

fields involving remote sensing data, including the esti-
mation of growing stock (Li et al. 2019), total above- 
ground biomass (Charoenjit et al. 2015) in ecosystems, 
vegetation structure, and biomass distribution (Lu and 
Weng 2007). However, there are still two major limita-
tions in the existing literature. First, there is a lack of 
research on methodologies that apply GLCM in combi-
nation with other remote sensing data, such as vegeta-
tion indices, geomorphological features, and weather 
parameters, for estimating OC stored in standing dead-
wood as well as OC sequestered yearly by trees. Second, 
black-box models limit their interpretability and thus 
their trustworthiness in real-world scenarios.

To address the first research gap, this study evaluates 
the integration of GLCM texture features within 
a machine learning framework, assessing their contribu-
tion to OC estimation performance across diverse algo-
rithm families and data configurations. This research 
explores the integration of GLCM features into a ML 
framework and validate their usefulness with three dif-
ferent families of machine learning algorithms: (1) tradi-
tional models, including Support Vector Regression 
(SVR), K-nearest Neighbors (KNN), Multilayer Perceptron 
(MLP), and Linear Regression (LR); (2) tree-based models, 
such as Random Forest (RF), Gradient Boosting Decision 
Tree (GBDT), Extreme Gradient Boosting (XGBoost), and 
Categorical Boosting (CatBoost); and (3) ensemble-based 
models, namely Stack Ensemble (StackEns) and an AVG- 
Ensemble model. The AVG-Ensemble combines predic-
tions from the top three individual performers – RF, 
CatBoost, and StackEns – by averaging their outputs to 
enhance robustness and predictive accuracy. 
Meanwhile, the StackEns model integrates predictions 
from multiple base learners using a meta-learner, allow-
ing the framework to leverage the complementary 
strengths of diverse algorithms. These models are tested 
across six distinct input data configurations, represent-
ing unique combinations of variables, including: (1) 
Vegetation Indices (VIs) alone, (2) GLCM metrics alone, 
(3) a fusion of VIs and GLCM metrics, (4) VIs combined 
with geomorphological and weather parameters, (5) 
GLCM metrics combined with geomorphological and 
weather parameters, and (6) a comprehensive integra-
tion of VIs, geomorphological parameters, weather para-
meters, and GLCM metrics.

To overcome the second limitation concerning model 
interpretability, this study incorporates SHapley Additive 
exPlanations (SHAP) (Lundberg et al. 2020) to provide 
transparent insights into feature contributions and 
enhance trust in OC estimation results. SHAP values 
quantify the contribution of each input feature to indi-
vidual predictions, thus enabling us to transform our 
model from a black-box to a white-box approach 
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(Lundberg et al. 2020). This shift enhances our ability to 
understand the influence of GLCM metrics on OC esti-
mation and fosters greater trust in the model’s predic-
tions, aligning with recent efforts by Saleem et al. 
(Abdelhakim et al. 2024) and Abdelhakim et al. (Al 
Saleem, Harrou, and Sun 2024), who demonstrate the 
effectiveness of explainable machine learning in improv-
ing model transparency and predictive accuracy in 
industrial and environmental contexts. Table 1 provides 
a comparative summary of existing OC estimation 
approaches and highlights how the proposed solution 
addresses key gaps in the literature.

Furthermore, several practical pathways can directly 
integrate our findings into real-world forest monitoring 
systems. National forest agencies can adopt this frame-
work to upscale plot-level carbon inventories by lever-
aging remote sensing data, which allows for cost- 
effective, high-resolution, and repeatable mapping of 
both CSE and SDC (Achard et al. 2012). Integration into 
operational workflows can be achieved through the 
deployment of these models within Geographic 
Information System (GIS) platforms, where spatial out-
puts such as predicted carbon densities and uncer-
tainty maps can be overlaid with land management 
or biodiversity data layers (Yona et al. 2020). The 
explainability of the models, enabled through SHAP- 
based feature attribution, makes them particularly 
valuable for climate policy reporting, carbon credit 
verification mechanisms such as REDD+ programmes, 
and environmental compliance auditing (Asner et al.  
2010). Practitioners can also use identified key predic-
tors (e.g. AVG_mean, SD_entropy) to guide more effi-
cient field sampling and sensor deployment, 
optimizing resource allocation towards high-priority 
areas. Furthermore, the incorporation of environmental 
covariates like geomorphology and weather variables 
ensures that the model remains robust across diverse 

forest types, management regimes, and climatic zones, 
making it adaptable to both temperate and tropical 
contexts. These capabilities make the framework 
a scalable, transparent decision-support tool that can 
significantly improve data-driven forest planning, con-
servation prioritization, and sustainable carbon 
monitoring.

The primary objective of this investigation, along with 
analysing distinct configurations, is to test and validate 
three key hypotheses.
Hypothesis 1 (H1):

Including GLCM metrics, which capture local variation 
in tree height, will improve the estimation of both CSE 
and SDC. GLCM metrics may help to better characterize 
local differences in tree size, thus improving tree growth 
estimation in forests with complex stand structures. 
Additionally, both broken and intact dead trees contri-
bute to localized variations in tree height, indicating that 
incorporating GLCM as covariates could potentially 
enhance SDC estimates.

Hypothesis 2 (H2):
The integration of GLCM metrics and VIs is expected to 

yield more accurate estimates compared to models that 
rely solely on either GLCM or VIs. This enhancement stems 
from the complementary relationship between the spatial 
texture information provided by GLCM and the spectral 
insights offered by VIs. The combined effect is likely to be 
particularly significant for standing deadwood.

Hypothesis 3 (H3):
Incorporating geomorphological and weather para-

meters alongside GLCM metrics will further enhance the 
accuracy of OC estimation models, as these environmen-
tal factors are known to significantly influence tree 
growth and, therefore, carbon sequestration in forest 
ecosystems.

This study makes three key contributions:

Table 1. Comparative summary of existing OC estimation approaches.
Approach Data Used Model Type Advantages Limitations

Field-based Sampling (Konda, Giri, and 
Mandla 2017)

On-site biomass, soil 
samples

Empirical High accuracy, ground- 
truth

Labor-intensive, limited 
spatial coverage

Ecosystem Models (e.g. CENTURY, RothC) 
(Achard et al. 2012) (Masera et al. 2003)

Environmental variables Process-based 
simulation

Captures biogeochemical 
dynamics

Requires extensive inputs, 
sensitive to 
assumptions

Satellite-based VIs 
(Cheng, Doosthosseini, and Kunkel 2022) 
(Uniyal et al. 2022),

NDVI, EVI, etc. ML or regression Wide coverage, temporal 
monitoring

Limited structural insight, 
poor under canopy

LiDAR-derived metrics (Csillik et al. 2019) 
(Vangi et al. 2023),

Tree height, canopy 
structure

ML (e.g. Random 
Forest)

Captures 3D forest 
structure

High cost, interpretability 
varies

GLCM features (limited studies) (Uniyal et al.  
2022) (Csillik et al. 2019) (Jay Labadisos 
Argamosa et al. 2018),

Texture from imagery ML (black-box) Spatial heterogeneity 
insight

Not yet used for SDC; 
lacks transparency

Proposed (This Study) GLCM, VIs, 
Geomorphology, 
Weather

Explainable ML Multi-source fusion, 
interpretable, first to 
model CSE + SDC 
regionally

Requires complex 
preprocessing
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(1) Novel integration of GLCM features for both 
CSE and SDC estimation: This is the first known 
study to apply GLCM metrics for estimating both 
live and dead carbon pools across a regional 
forested landscape, expanding beyond the typical 
focus on live biomass or AGB.

(2) Development of an explainable ML framework: 
By using SHAP values, we provide transparency 
into feature importance and model behaviour, 
bridging the gap between predictive power and 
interpretability.

(3) Comprehensive comparison of data configura-
tions and algorithms: Among the ten models 
evaluated, RF and CatBoost achieved the best 
performance. For CSE, RF attained an R2 of 0.67 
and RMSE of 0.85 (tC ha −1 yr − 1), closely fol-
lowed by CatBoost with an R2 of 0.66 and RMSE 
of 0.86 (tC ha −1 yr − 1). In the case of SDC, both 
models also performed well, with RF reaching an 
R2 of 0.67 and RMSE of 2.73 (tC ha − 1), while 
CatBoost achieved an R2 of 0.65 and RMSE of 
2.77 (tC ha − 1). These results indicate that the 
choice of model plays a crucial role, with RF and 
CatBoost consistently delivering superior predic-
tive accuracy across different configurations.

2. Background

2.1. Organic carbon estimation techniques

Accurately estimating OC levels is crucial for understand-
ing soil health, ecosystem dynamics, and the carbon 
cycle and informing climate change mitigation policies. 
Various techniques have been developed to estimate OC 
across ecosystems, each with strengths, limitations, and 
specific applications (Brown 2002; Sun and Liu 2020).

Field-based approaches are widely employed to esti-
mate OC in target ecosystems. These methods generally 
involve direct measurements of OC stocks, such as 
through soil sampling or biomass inventories, and may 
also include flux measurements, such as those obtained 
via Eddy covariance techniques (Konda, Giri, and Mandla  
2017). Field-based techniques provide essential ground- 
truth data for validating model predictions and remote 
sensing estimates (Konda, Giri, and Mandla 2017). 
However, these measurements are often labour- 
intensive and time-consuming, and they may be limited 
in spatial and temporal coverage or require specific 
assumptions or conditions (e.g. the eddy covariance 
technique).

Another widely used approach for CSE estimation 
involves the use of ecosystem models. These models 
simulate the biophysical processes governing carbon 

cycling within ecosystems, incorporating factors such 
as organic matter decomposition, soil respiration, and 
biomass accumulation (Achard et al. 2012). Ecosystem 
models range from simple empirical models to complex 
process-based models that account for detailed physio-
logical and ecological processes. Commonly used mod-
els include the CENTURY model for soil OC (Masera et al.  
2003) and the RothC model for long-term carbon turn-
over in soils (Achard et al. 2012). While these models 
offer valuable insights into OC dynamics, they often 
require extensive data inputs and can be sensitive to 
uncertainties in parameters and assumptions (Masera 
et al. 2003).

Remote sensing technologies provide another 
powerful tool for estimating OC at large spatial scales. 
Satellite imagery and LiDAR (Light Detection and 
Ranging) products enable the mapping and monitoring 
of vegetation properties and soil physical characteristics, 
which are key indicators of OC stocks (Csillik et al. 2019). 
These data can be integrated with field measurements 
to produce spatially explicit maps of OC stocks and 
fluxes (Vangi et al. 2023). Advances in remote sensing, 
including higher spatial and spectral resolution sensors, 
have improved the accuracy of OC estimates (Uniyal 
et al. 2022). However, challenges remain in data inter-
pretation, sensor calibration, and the integration of 
remote sensing data with ground-based measurements.

In summary, assessing OC is a complex task that 
involves integrating diverse data streams, methodolo-
gies, and tools. While ecosystem models, field-based 
measurements, and emerging technologies provide 
valuable insights, remote sensing stands out for its 
exceptional spatial coverage and efficiency in monitor-
ing large areas repeatedly. By combining these varied 
approaches, we can deepen our understanding of OC 
dynamics within ecosystems and develop more robust 
strategies for climate change mitigation.

2.2. GLCM metrics in remote sensing and forestry 
applications

GLCM metrics have been employed across various 
domains, including assessing growing stock and total 
above-ground biomass in forest ecosystems. Uniyal 
et al. (2022) emphasized the quantification of above- 
ground biomass (AGB) in urban forests of Jodhpur, 
Rajasthan, India, to evaluate their significance in carbon 
sequestration. By employing machine learning (ML) 
regression algorithms, the authors effectively enhanced 
the predictive accuracy of AGB estimation, illustrating 
the potential of remote sensing and texture analysis in 
understanding urban forest dynamics. Csillik et al. (2019) 
underscore the critical role of tropical forests in 

4 M. FASIHI ET AL.



mitigating climate change and the challenges presented 
by human activities that convert these ecosystems from 
carbon sinks to sources. They introduced a novel 
method to create the first large-scale, high-resolution 
map of aboveground carbon stocks and emissions in 
Peru. This was achieved by integrating airborne LiDAR 
canopy height data with satellite imagery, utilizing 
a random forest regression model enhanced by GLCM 
texture features. Jay Labadisos Argamosa et al. (2018) 
investigated the application of the GLCM calculated 
from Sentinel-1 C-band data to estimate AGB in man-
grove forests, a field that has been less explored com-
pared to L-band synthetic aperture radar (SAR) data. 
Their research employed Random Forest regression 
and demonstrated that incorporating specific polariza-
tion features and principal components significantly 
enhanced the model’s performance. Wijaya et al. (2010) 
focused on estimating AGB and stem volume in East 
Kalimantan’s tropical forests using remote sensing (RS), 
GIS, and field data. A key contribution of their research 
was the integration of GLCM texture features with other 
predictors, such as Enhanced Thematic Mapper (ETM) 
band reflectance and VIs. This integration enabled 
a more nuanced analysis of forest structure, significantly 
enhancing the predictive models for AGB estimation. 
The analysis involved 1,460 sampling plots, revealing 
a slight decline in biomass over time. However, the 
study noted that RS estimates tended to be lower than 
those derived from GIS and field measurements, high-
lighting the complexities and uncertainties in modelling 
forest properties.

This literature review highlights the potential for 
improving AGB estimation accuracy by effectively cap-
turing texture information while also emphasizing the 
need for further research. Notably, none of the previous 
studies have utilized GLCM features to estimate forest 
growth and, consequently, CSE. Furthermore, the exist-
ing literature primarily focuses on assessing living grow-
ing stock and biomass, with no reported results for 
standing deadwood in forests, which, as mentioned, is 
also important for biodiversity conservation.

2.3. Explainable models in forestry applications

To date, no research has utilized an explainable model to 
estimate OC while highlighting the interaction effects of 
variables like VIs, geomorphological parameters, 
weather factors, and GLCM. The most relevant studies 
in this area are represented by Ghafarian et al. (2022), 
Cheng et al. (Vangi et al. 2023), Li et al. (Jay Labadisos 
Argamosa et al. 2018), and Nguyen et al. (Asner et al.  
2010). Ghafarian et al. (2022) utilized XGBoost and SHAP 
to predict forest microclimate in Brandenburg, Germany. 

Using standard meteorological data, they demonstrated 
XGBoost’s effectiveness in predicting sub-canopy tem-
peratures, crucial for ecological research. Their work 
highlights SHAP’s role in interpreting complex models 
and aiding in landscape planning and forest manage-
ment. Cheng, Doosthosseini, and Kunkel (2022) explored 
explainable AI (XAI) and feature unlearning (FUL) to 
improve the reliability of deep learning models in for-
estry. By integrating domain knowledge into model 
training, they improved classification accuracy and 
emphasized the importance of transparency in artificial 
intelligence (AI) models for forestry applications. Li et al. 
(2023) utilized a decision tree algorithm for modelling 
forest health due to its accuracy and interpretability. An 
objective weighted method based on the CRITIC criteria 
was applied to classify forest health using data from 132 
forest samples. The findings indicated that species diver-
sity is the key metric for assessing forest health and with 
their model achieving up to 90% accuracy, underscoring 
the value of interpretable machine learning in sustain-
able forest management. Nguyen, Kellenberger, and 
Tuia (2022) developed an explainable deep learning 
model for forest mapping, incorporating prior knowl-
edge about forest definitions. Their model fosters trust 
by uncovering patterns in the data and allowing for 
manual adjustments, although the intermediate predic-
tions continue to depend on black-box methods. This 
strategy enhances interpretability and holds the poten-
tial for adaptation to a range of land cover mapping 
tasks.

2.4. Identification of gaps

The investigation of OC sequestered by forests using ML 
models reveals a significant gap in the adoption of 
explainable models. While ML shows great potential in 
this area, the lack of transparency and interpretability 
has limited progress. Most research has overlooked the 
use of explainable models, particularly for understand-
ing variable interactions in carbon estimation. This gap is 
crucial because understanding the complex relation-
ships that influence OC is essential. Explainable models 
improve predictive accuracy and provide insights into 
the mechanisms behind predictions, enhancing inter-
pretability and trustworthiness. In forestry, factors like 
VIs, geomorphological parameters, weather variables, 
and textural features such as GLCM metrics are influen-
tial, and integrating explainable models could be highly 
beneficial. These models allow researchers to explore 
the intricate interactions between variables and gain 
a deeper understanding of their contributions to OC. In 
addition, such models can be used to spatialize the 
aboveground carbon to produce wall-to-wall maps of 
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the target variables. Despite previous studies examining 
various factors affecting carbon sequestration, the full 
potential of explainable models remains underutilized. 
Bridging this gap by adopting advanced explainable 
models is imperative to improve prediction accuracy, 
reliability, and informed decision-making in forestry 
management.

3. Methodology

3.1. Dataset description

The study was carried out in the Autonomous Region of 
Friuli Venezia Giulia, located in northeastern Italy 
(Figure 1). It utilized a variety of data sources, including 
forest inventory records, digital elevation models, satel-
lite imagery, and GLCM data, to examine OC within the 
region. By combining these diverse datasets, the 
research aimed to provide a comprehensive understand-
ing of the factors influencing forest health and structure.

3.1.1. Third Italian national forest inventory
The Third Italian National Forest Inventory (NFI) serves as 
a foundational dataset for this research. Established in 
2015, the NFI employed a systematic sampling design 
across three phases, with data collection conducted 

between 2018 and 2019 (Gasparini and Papitto 2022). 
The first phase involved classifying land use and land 
cover through photointerpretation of high-resolution 
aerial images on a 1 km × 1 km grid that spans the entire 
country. In the second phase, a subset of these points 
was selected to assess qualitative forest characteristics 
(such as composition, forest category, management, 
etc.). The third phase involved conducting dendrometric 
field measurements on a subset of points categorized 
during the second phase. Data collection took place 
within circular plots with radii of 4 m and 13 m, deter-
mined based on specific tree diameter thresholds at 
1.30 m height (Tabacchi, Di Cosmo, and Gasparini  
2011). Diameters at breast height (DBH) were measured 
using dendrometric calipers, and tree heights were 
recorded with hypsometers. Additionally, the decay 
class for both standing and lying deadwood was docu-
mented. These measurements enabled the calculation of 
key attributes, including organic carbon (OC). For stand-
ing deadwood, distinct approaches were used to esti-
mate biomass for unbroken and broken (truncated) 
trees. Biomass for unbroken dead trees was determined 
using the same method applied to living trees. For bro-
ken trees, volume was estimated using DBH and field- 
measured height, assuming a cylindrical shape. This 
volume was then converted to biomass using species 

Figure 1. The Friuli Venezia Giulia region has wooded areas and national forest inventory plots. Reference system: WGS84.
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group-specific conversion factors (conifers and broad-
leaves) and decay classes provided by Di Cosmo et al. 
(2013). The biomass of living and standing deadwood 
was converted into carbon stock by assuming a 50% 
carbon content in woody biomass (Krug et al. 2006). 
Carbon amounts, calculated at the plot level, were then 
standardized to tons per hectare (t ha− 1), based on the 
size of the survey plots (531 m2 or 50 m2, depending on 
the DBH threshold). Carbon sequestration efficiency 
(CSE) was derived from the annual volume increment, 
measured on a sub-sample of trees within each survey 
plot. These trees were scored at 1.30 m above the 
ground using an increment borer to determine the dia-
meter increment over the last five annual rings (exclud-
ing the current year’s ring). The annual volume 
increment was then calculated using allometric equa-
tions (Gasparini and Papitto 2022) and converted into 
carbon uptake following IPCC guidelines (Krug et al.  
2006).

Our analysis was conducted on 279 inventory plots 
across the Friuli Venezia Giulia region (Italy), excluding 6 
plots impacted by the 2018 Vaia storm. These plots were 
also used to derive predictor-related variables. By utiliz-
ing the recorded coordinates of the plot centres and the 
plot area (530 m2), relevant variables were extracted 
through a geographic information system (GIS), as 
detailed in the subsequent sections. This comprehensive 
dataset offers essential measurements for evaluating 
forest biomass and understanding carbon dynamics. 
For additional details, please refer to Cadez et al. (2024; 
Fasihi et al. 2024).

3.1.2. Digital elevation models and derivatives
The data acquired from Airborne Laser Scanning (ALS) 
provides a crucial source of high-resolution information 
on forest tree structure. For this study, ALS data were 
collected by the Autonomous Region of Friuli Venezia 
Giulia. Specifically, the ALS data achieved an average 
point density of 16 points per square metre (m2), with 
a reduced density of 10 points per m2 observed above 
1000 metres above sea level (a.s.l.) and a vertical accu-
racy of ±15 cm. The ALS data facilitated the generation 
of a Digital Terrain Model (DTM) with a resolution of 
10 × 10meters, which served as the foundation for deriv-
ing key geomorphological predictors: elevation (ELE), 
slope (SLO), and aspect (ASP). The maximum, median, 
average, and standard deviation values for each predic-
tor were calculated based on the plot area. Furthermore, 
high-resolution raster grid models derived from the 
point cloud – the Digital Surface Model (DSMf, first 
pulse) and the Digital Terrain Model (DTM, ground 
points) – were used to create a Canopy Height Model 
(CHM) by calculating the difference between them. The 

resulting CHM, with a spatial resolution of 0.5 metres, 
was subsequently used to extract the predictor variables 
described in Section 3.1.5

3.1.3. Satellite data
Satellite data play a critical role in understanding vege-
tation dynamics and forest health over time. In this 
study, we utilized Sentinel-2 Level 2A data collected 
from June to August during the tree-growing seasons 
aligned with the NFI sampling period. Data were pro-
cessed using Google Earth Engine (Gorelick et al. 2017), 
and a median composite was generated for each spec-
tral band after filtering for cloud presence. Four key VIs 
were derived from this image collection:

(1) Normalized Difference Vegetation Index (NDVI): 
widely used in forestry, NDVI estimates various 
vegetation properties, including leaf area index 
(LAI), plant productivity, aboveground biomass, 
and carbon stock (Huang et al. 2021), (Liang 
et al. 2022).

(2) Normalized Difference Infrared Index (NDII): 
a reflectance measurement sensitive to changes 
in tree water content, applicable in agriculture, 
forest canopy monitoring, and the detection of 
stressed vegetation (Buschmann 1993).

(3) Enhanced Vegetation Index (EVI): closely asso-
ciated with Gross Primary Production (GPP), EVI 
measures vegetation greenness while accounting 
for atmospheric effects and canopy background 
interference. This makes it especially useful in 
areas with dense vegetation (Sims et al. 2006), 
(Huete et al. 2025).

(4) Green Normalized Difference Vegetation Index 
(GNDVI): a modified version of NDVI that is more 
sensitive to variations in chlorophyll content 
(Gitelson and Merzlyak 1998).

Also, for the VIs (i.e. NDVI, NDII, EVI, and GNDVI), we 
extracted the median values for each plot.

3.1.4. Weather data
To account for the influence of weather conditions on 
forest dynamics and growth, we incorporated tempera-
ture and rainfall data generated through the EURO- 
CORDEX project, representing the latest advancements 
in regional climate modelling at the European scale and 
providing high spatial resolution. The weather data were 
supplied in the form of NetCDF files, with temperature 
represented at a grid resolution of 500 × 500 m and rain-
fall at 5 × 5 km. The temperature data included average 
soil temperatures for both the summer (TEMP summer: 
June, July, August) and spring (TEMP spring: March, 
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April, May) seasons, with values assessed for maximum, 
minimum, and average were extracted as predictor 
based on the area of the plots. Precipitation data were 
also considered for the same seasonal periods (PREC 
summer and PREC spring), focusing on the average rain-
fall during these months that was extracted for each plot 
as predictor variables. Weather data were essential for 
understanding the temporal variations that affect forest 
health and tree growth, allowing us to contextualize our 
findings within changing environmental conditions.

3.1.5. GLCM metrics selection
The Gray Level Co-occurrence Matrix (GLCM) was devel-
oped by Haralick, Dinstein, and Shanmugam (1973) and 
provides a statistical framework for capturing the joint 
distribution of grey levels among pixels with specified 
spatial relationships (Li et al. 2021). This method is widely 
used for texture feature extraction, enabling the calcula-
tion of key image attributes. By leveraging GLCM, we can 
enhance our ability to identify and quantify image tex-
tural characteristics, forming a solid foundation for esti-
mating OC and conducting other environmental 
assessments (Zhou and Feng 2023). Specifically, GLCM 
(Haralick, Dinstein, and Shanmugam 1973) was com-
puted from the CHM using the GLCM R package, which 
uses a 3 × 3 processing window in all directions (Huang 
et al. 2021). For each inventory plot, we calculated a set 
of textural variables, i.e mean, variance, homogeneity, 
contrast, dissimilarity, entropy, and second moment. 
Then, average and standard deviation at the plot level 
were calculated for each textural variable. The full list of 
GLCM-related variables is reported in Table 2. This 
approach provides a comprehensive understanding of 
image texture and simplifies the extraction of relevant 
features necessary for further analysis (X. Li et al. 2021). 
Table 2 presents the formulas for GLCM attributes, where 

i; j are row and column numbers, N is the number of gray 
levels in the image, P i; jð Þrepresents the normalized 
GLCM value at position (i,), μ is the mean intensity of 
the image. Normalization was deliberately not applied to 
the GLCM features to preserve their physical interpret-
ability and maintain consistency with the original CHM- 
derived texture metrics. Since the analysis utilized tree- 
based algorithms such as XGBoost and CatBoost, which 
are inherently insensitive to feature scaling, normaliza-
tion was neither necessary nor beneficial for predictive 
performance. Furthermore, SHAP values were employed 
to interpret model predictions, offering insights into 
feature importance while retaining features in their ori-
ginal scale. This approach, based on the method intro-
duced by Lundberg, Allen, and Lee (2022), reinforced the 
decision to forgo normalization, as it allowed for both 
accurate modelling and meaningful interpretation of 
texture metrics.

3.1.6. Statistical analysis of data
This section provides an in-depth statistical analysis of 
the two primary target variables: CSE and SDC. 
Understanding their distributional properties is essential 
for guiding appropriate modelling strategies and ensur-
ing a valid interpretation of results. Table 3 summarizes 
the descriptive statistics for both variables. The mean 
value for CSE is relatively low at 1.68 tC ha− 1 yr− 1, with 
less variability compared to SDC, which has a higher 
mean of 5.07 tC ha− 1. Both variables exhibit positive 
skewness and moderate kurtosis, indicating right- 
skewed distributions with a tendency towards extremely 
high values. The coefficients of variation—0.72 for CSE 
and 0.78 for SDC – suggest moderate relative variability 
in each dataset. Notably, SDC demonstrates 
a considerably wider overall range and interquartile 
range, reflecting greater dispersion in values.

Table 2. The formula for GLCM attributes, where i; j are row and column numbers, N is the number of gray levels in the image, P i; jð Þ
represents the normalized GLCM value at position (i.J), μ is the mean intensity of the image.

GLCM attributes Description formula

Mean (MEAN) The average grey level intensity of the image.
1

N2

PN� 1

i;j¼0
Pi;j

Homogeneity 
(HOM)

Measures how uniform or regular the texture is. Higher values indicate a more uniform texture. PN� 1

i;j¼0
i Pi;j

1þi� j2

Contrast Measures local variations in intensity between neighbouring pixels. Higher values indicate greater differences. PN� 1

i;j¼0
iPi;j 1 � jð Þ

2

Dissimilarity Measures the average difference in intensity between neighbouring pixels. Reflects texture diversity. PN� 1

i;j¼0
iPi;j 1 � j½ �

Entropy Quantifies the randomness or unpredictability of pixel intensities in the image. PN� 1

i;j¼0
iPi;j � lnPi;j
� �

Variance Measures the spread or dispersion of pixel intensities around the mean intensity value.
P

i;j
xi;j � μð Þ

2

n� 1
Second Moment Quantifies the overall homogeneity or uniformity of the image texture. Higher values indicate a more uniform 

texture.
PN� 1

i;j¼0
iPi;j

2
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To further investigate the presence of extreme values, 
an outlier analysis was conducted using the Interquartile 
Range (IQR) method (Figure 2). This approach identifies 
values lying beyond 1.5 times the IQR from either quar-
tile as potential outliers. For CSE, approximately 3.23% of 
the data points were classified as outliers. For SDC, 
3.58% were identified as outliers. These relatively low 
percentages indicate that both variables are largely free 
from extreme anomalies, contributing to the robustness 
of the dataset. Boxplots were employed to represent the 
data distribution and highlight potential outliers.

Additionally, histograms overlaid with Kernel Density 
Estimation (KDE) curves (Figure 3) were created to better 
understand the shape and spread of each distribution. 
The CSE distribution is strongly right-skewed, with 

a clear concentration of lower carbon stock values and 
a tapering tail extending towards higher values. This 
suggests that areas with high carbon stocks are less 
prevalent in the dataset. The KDE curve confirms this 
pattern and reveals a single dominant peak, implying 
a unimodal distribution. The SDC variable shows 
a similarly skewed distribution, albeit with a slightly 
broader spread and a more pronounced tail. This indi-
cates higher variability in structural diversity across plots. 
The KDE visualization also reveals a clear mode, suggest-
ing possible clustering of values potentially linked to 
different forest types or ecological conditions.

3.2. Machine learning models

This section presents the machine learning models 
explored in this study, grouped into four categories: 
Traditional Machine Learning Models, Tree-Based 
Models, and Ensemble Models. This structure reflects 
the diversity in modelling techniques and highlights 
the unique contributions of each category to regression 
tasks.

3.2.1. Traditional machine learning models
This category comprises individual learners based on 
linear functions and distance metrics. These models are 
relatively simple and interpretable.

● Support Vector Regression (SVR): Utilizes kernel 
functions to map inputs into higher-dimensional 
spaces, allowing it to model nonlinear patterns 
while controlling model complexity (Cortes, 
Vapnik, and Saitta 1995).

Table 3. Descriptive statistics of the target variables CSE and 
SDC. The table includes the average (avg), standard deviation 
(std), minimum (min), maximum (max), first quartile (Q1), med-
ian (Q2), third quartile (Q3), skewness, kurtosis, coefficient of 
variation (CV), range, and interquartile range (IQR), offering 
a comprehensive summary of central tendency, dispersion, and 
distribution characteristics.

Statistic
CSE 

(tC ha-1 yr-1)
SDC 

(tC ha-1)

Avg 1.682044775 5.067998254
Std 1.205472141 3.9685422
Min 0.011211573 0.02289625
Max 0.737296892 2.167823779
Q1 1.438955245 4.012260174
Q2 2.373536051 6.961895687
Q3 6.469211801 20.57107738
Skewness 1.003962 1.379363
Kurtosis 0.88756 2.176127
Coefficient of Variation (CV) 0.716671 0.783059
Range 6.458 20.54818
IQR 1.636239 4.794072

Figure 2. Boxplots of the target variables CSE and SDT showing the distribution and presence of outliers. Outliers are indicated by 
individual points beyond the whiskers, based on the IQR method.
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● K-Nearest Neighbors (KNN): A non-parametric 
model that predicts the outcome based on the 
average of k nearest samples. The value of k is 
critical and affects model sensitivity and general-
ization (Xue and Su 2017).

● Multilayer Perceptron (MLP): A feedforward 
neural network model with one or more hidden 
layers that uses activation functions and is trained 
via backpropagation to capture nonlinear relation-
ships between inputs and outputs (Gao et al. 2018).

● Linear Regression (LR): LR is a fundamental sta-
tistical method used to model the relationship 
between a dependent variable and one or more 
independent variables by fitting a straight line to 
the observed data. It is commonly used for pre-
dicting numerical outcomes and understanding 
the strength and direction of associations 
between variables (Montgomery, Peck, and 
Vining 2021).

3.2.2. Tree-based models
Tree-based models use decision tree structures to create 
an interpretable model for the data under analysis. 
These models are particularly effective in capturing non- 
linear relationships, ranking feature importance, and 
handling mixed data types.

● Random Forest (RF): An ensemble of decision 
trees built using bootstrap aggregating (bagging), 
reducing overfitting, and improving model stability 
and interpretability (Lundberg, Allen, and Lee  
2022).

● Gradient Boosting Decision Tree (GBDT): 
Constructs additive models in a sequential manner 

by minimizing residual errors at each stage through 
gradient descent (Cortes, Vapnik, and Saitta 1995).

● Extreme Gradient Boosting (XGBoost): A scalable 
and regularized extension of GBDT that improves 
computation and generalization through efficient 
parallelism and regularization (Xue and Su 2017).

● Categorical Boosting (CatBoost): A gradient 
boosting algorithm that handles categorical fea-
tures using ordered boosting and target statistics, 
reducing overfitting and improving accuracy (Gao 
et al. 2018).

3.2.3. Ensemble models
Ensemble models integrate predictions from multiple 
base learners to enhance predictive accuracy and reduce 
generalization error.

● Stack Ensemble (StackEns): A model that utilizes 
a shallow Decision Tree Regressor and a Bagging 
Regressor as base learners, with Ridge Regression 
serving as the meta-learner. This setup balances 
performance and interpretability while promoting 
model diversity. Compared to more complex lear-
ners such as CatBoost and XGBoost, this ensemble 
enhances generalization, which is particularly valu-
able in ecological modelling.

● AVG-Ensemble Model: In this study, three high- 
performing models – RF, CatBoost, XGBoost – were 
selected to form the ensemble by taking the aver-
age predictions of the constituent models. Their 
combined outputs aim to deliver more accurate 
and robust predictions than any single model 
alone. This strategy leverages the strengths of 
each model, capturing underlying data patterns 

Figure 3. Distribution of target variables (CSE and SDC). Histograms with kernel density estimates (KDE) illustrate the distribution of 
CSE and SDC across the dataset. Both variables exhibit right-skewed distributions, indicating a higher concentration of lower values 
and a long tail towards higher values.
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more effectively and improving overall prediction 
reliability. Mathematically, this can be expressed as 
follows (Equation 1), where ~yensemble;i is the ensem-
ble prediction for the i � th data point, N is the 
number of models, and ~yj;i is the prediction of 
j � th model for the i � th data point. 

3.3. Explainable model architecture

SHAP values provide a significant advantage in model 
interpretability by offering unique, consistent, and 
locally accurate attribution values (Ghafarian et al.  
2022). Unlike traditional feature attribution methods, 
SHAP values are computed for every individual predic-
tion, providing detailed insights into the model’s beha-
viour with an unprecedented level of granularity 
(Ghafarian et al. 2022). This contrasts with feature attri-
bution techniques used with ML algorithms, which typi-
cally assign importance to input features without 
considering the specifics of individual predictions. By 
integrating SHAP with ML algorithms, we comprehen-
sively understand the complex relationship between 
GLCM metrics and OC. The key advantage of SHAP 
values lies in their ability to generate a richer visual 
representation, such as SHAP summary plots, which 
depict individualized feature attributions (Ghafarian 
et al. 2022). These plots highlight the range and distribu-
tion of a feature’s impact on the model’s output, offering 
valuable insights into how a feature’s value correlates 

with its influence on predictions (Ghafarian et al. 2022). 
Figure 4 shows the pipeline named ‘GLCM-Based 
Organic Carbon Estimation and Explainable ML Pipeline 
for Forest Inventory Data’, developed as part of this 
research. The pipeline integrates texture analysis using 
GLCM and machine learning models to estimate organic 
carbon from forest inventory data, providing accurate 
predictions and model interpretability.

4. Experimental setup

4.1. Training and testing procedure

To enhance the learning of the model and ensure robust 
performance evaluation, we adopted a 5-fold cross- 
validation technique. This method minimizes the influ-
ence of data variability and promotes greater diversity in 
the training sets. The dataset was divided into five equal 
parts or ‘folds’, with each cycle comprising training on 
four folds (80% of the data) and testing on the remaining 
one-fold (20% of the data). This procedure was repeated 
five times, with each fold serving as the test set once. By 
computing the average performance metrics across all 
iterations and runs, we obtained a more dependable 
assessment of the model’s efficacy. Moreover, in terms 
of tackling overfitting, 5-fold cross-validation indirectly 
addresses this concern by evaluating the model’s per-
formance across diverse data subsets. This ensures that 
the model’s effectiveness is not overly tailored to specific 
training data, thereby aiding in the detection and pre-
vention of overfitting issues.

Figure 4. GLCM-Based organic carbon estimation and explainable ML pipeline for forest inventory data.
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4.2. Assessment of model predictions using 
jackknife resampling and error bars

The jackknife resampling technique is a well-established 
method for evaluating the robustness and reliability of 
prediction models, particularly in complex environmen-
tal studies such as ours, which estimate OC in trees using 
GLCM features and explainable machine learning 
(Montgomery, Peck, and Vining 2021). In our study, jack-
knife resampling was applied by systematically leaving 
out one observation at a time from the training set and 
retraining the model on the remaining n-1 samples. Each 
of these jackknife models was then used to make pre-
dictions on a fixed test set. For each test sample, the 
standard deviation across predictions from the 
n jackknife models was computed, quantifying the varia-
bility introduced by perturbations in the training data 
(Breiman 2001). This uncertainty estimation is based on 
model output resampling via jackknife and does not rely 
on cross-validation folds. These standard deviations 
were used as error bars to visualize prediction uncer-
tainty. This approach is especially valuable for small 
datasets or models that may be sensitive to individual 
data points, offering a practical and interpretable way to 
assess confidence in the model’s predictions.

Error bars are a critical aspect of this research as they 
provide a visual representation of the uncertainty asso-
ciated with each prediction (Friedman 2001). In the con-
text of environmental modelling, where predictions can 
have significant implications for policy and management 
decisions, understanding the range of possible out-
comes is essential. The jackknife-derived error bars in 
these figures reflect not only the variability in the pre-
dictions but also the model’s sensitivity to individual 
data points in the training set (Shao and Tu 2012). 
Larger error bars suggest areas where the model is less 
certain, potentially due to factors like limited data, high 
variability in the input features, or the inherent complex-
ity of the phenomena being modelled (Hesterberg  
2015). These error bars visually indicate the confidence 
intervals around each prediction, helping us understand 
where our model performs well and where it struggles.

4.3. Evaluation metrics

We examine three metrics to assess the models’ perfor-
mance: coefficient of determination (R2) (Equation 2), 
root-mean-square error (RMSE) (Equation 3), and root- 
mean-square error percentage (%RMSE) (Equation 4). 
Typically, lower RMSE and %RMSE values indicate super-
ior performance, whereas a higher R2 signifies better 
estimation accuracy. In these Equations, ŷ refers to the 
predicted value, yi is the measured observed value, �y 
represents the mean of the observed values, and n is the 
test sample size. 

4.4. Parameter tuning

To optimize the performance of our models and 
refine our estimates for OC estimation, we utilized 
the grid search technique (Feurer and Hutter 2019). 
This method entails generating a grid of hyperpara-
meter values and training the models with each 
possible combination (Feurer and Hutter 2019). This 
systematic approach enables a thorough exploration 
of different hyperparameter configurations, aiding in 
the identification of the most effective setup for our 
models. Tables 4 and 5 provide comprehensive 
information on the range of hyperparameter values 
investigated, along with the optimal hyperpara-
meters identified for the three top models as 
examples.

Table 4. List of the hyperparameters of the algorithms, their meaning, and the range explored during grid search.
Models Parameter name Meaning Range

CatBoost iterations Max count of trees. [100, 150, 200, 250]
learning_rate Boosting learning rate. [0.03, 0.1]
depth Depth of a tree. [2, 4, 6, 8, 10]
l2_leaf_reg Coefficient at the L2 regularization term of the cost function. [0.2, 0.5, 1, 3, 4]

GBDT n_estimators The number of boosting stages to perform. [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000]
max_leaf_nodes Grow trees with max_leaf_nodes in the best-first fashion. [2, 5, 10, 20, 50, 100]
learning_rate Boosting learning rate. [1, 0.1, 0.01,0.001]
max_depth Maximum depth of the individual regression estimators. [1,2,4]
subsample The fraction of samples to be used for fitting the individual base learners. [0.5, 0.75, 1]

XGBoost max_depth Maximum tree depth for base learners. [4, 5, 10]
n_estimators The number of boosting stages to perform. [500, 600, 700, 800]
learning_rate Boosting learning rate. [0.01, 0.015, 0.02]
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5. Results

The performance of the models in estimating OC was 
evaluated using six distinct configurations of input vari-
ables. These configurations included: (1) solely VIs, (2) 
solely GLCM Metrics, (3) a fusion of VIs and GLCM 
Metrics, (4) a combination of VIs, geomorphological 
parameters, and weather parameters, (5) GLCM metrics 
along with geomorphological parameters and weather 
parameters, and (6) a holistic approach integrating all 
variables.

The incorporation of GLCM metrics significantly 
improved model performance across all configurations 
for CSE estimation (Table 6). Conf 2, which used only 
GLCM for CS estimation, consistently outperformed Conf 
1, which relied solely on vegetation indices (VIs), across 
nearly all models. This highlights the strong predictive 
power of texture-based features in modelling CSE. For 
example, CatBoost in Conf 4, which includes VIs, geo-
morphological parameters, and weather data, achieved 
an R2 of 0.62, an RMSE of 0.89 tC ha− 1 yr− 1, and a %RMSE 
of 52.80%. This was further improved in Conf 5, where 
adding GLCM metrics resulted in an R2 of 0.62 and 
a reduced %RMSE of 52.80%. The best CatBoost perfor-
mance was seen in Conf (integrating VIs, GLCM, geomor-
phological, and weather variables), achieving an R2 of 
0.66, an RMSE of 0.86 tC ha− 1 yr− 1, and a %RMSE of 
50.99%. These results show that including GLCM fea-
tures adds value beyond traditional spectral indices. 
A similar trend is observed with XGBoost and GBDT 
models. In both cases, Conf 6 consistently delivers the 
best performance, indicating that the integration of all 
feature types yields the most accurate predictions. For 
instance, XGBoost achieved its highest R2 of 0.59 in Conf 
5 and 6, coupled with the lowest RMSE and %RMSE 
values (0.92 tC ha− 1 yr− 1 and ~ 54.2%, respectively). 
GBDT followed this pattern, with its best performance 
in Conf 6.

However, the RF model outperformed all models in 
the study, particularly in Conf 6. RF achieved the highest 

overall R2 of 0.67, the lowest RMSE of 0.85 tC ha− 1 yr− 1, 
and the lowest %RMSE of 50.22%, indicating its superior 
capability in modelling CSE when provided with 
a comprehensive feature set. The consistent improve-
ment from Conf 1 through Conf 6 in RF performance 
further underscores the value of using a multimodal 
feature integration strategy. For example, RF improved 
from an R2 of 0.24 in Conf 1 to 0.65 in Conf 5 and finally 
to 0.67 in Conf 6.

This trend was mirrored, albeit to a lesser extent, in 
other models such as MLR, MLP, KNN, SVR, and ensemble 
approaches. While these models showed noticeable 
improvements with the inclusion of GLCM metrics (espe-
cially in Conf 2 and 5), their predictive performance 
generally lagged behind that of CatBoost, XGBoost, 
GBDT, and RF. For instance, MLP and KNN showed sig-
nificant performance drops in Conf 4–6, highlighting 
their sensitivity to input feature complexity and model 
structure. Stackens and AVG-Ens approaches yielded 
moderate improvements over simpler configurations 
but did not surpass the top-performing individual mod-
els. In Conf 6, Stackens achieved an R2 of 0.49 and an 
RMSE of 0.92 tC ha− 1 yr− 1, while AVG-Ens recorded an R2 

of 0.42.
A similar pattern is observed in the estimation of 

SDC, where incorporating GLCM metrics consistently 
improved model performance across all models and 
configurations (Table 7), highlighting the added value 
of texture-based information from remote sensing. 
Conf 2, which incorporated only GLCM metrics along-
side VIs, consistently outperformed Conf 1 (VIs only), 
indicating the independent predictive power of GLCM 
features. For instance, CatBoost exhibited a marked 
improvement in R2 from 0.18 to 0.51, with 
a corresponding decrease in RMSE from 3.33 to 3.16 
tC ha−1). RF followed a similar trend, with R2 increasing 
from 0.17 to 0.50. These improvements underscore the 
ability of GLCM metrics to capture spatial texture infor-
mation that complements spectral data in modelling 
soil development classes.

Table 5. Best hyperparameters found for all the models, for all configurations, for the target variable CSE.
Model Conf1 Conf2 Conf3 Conf4 Conf5 Conf6

CatBoost learning_rate: 0.03 
l2_leaf_reg: 0.5 
iterations: 150 
depth: 2

learning_rate: 0.1 
l2_leaf_reg: 1 
iterations: 100 
depth: 2

learning_rate: 0.03 
l2_leaf_reg: 0.5 
iterations: 150 
depth: 2

learning_rate: 0.1 
l2_leaf_reg: 3 
iterations: 200 
depth: 6

learning_rate: 0.1 
l2_leaf_reg: 3 
iterations: 200 
depth: 6

learning_rate: 0.1 
l2_leaf_reg: 3 
iterations: 200 
depth: 6

GBDT subsample: 0.75 
n_estimators: 100 
max_leaf_nodes: 
100 
max_depth: 2 
learning_rate: 0.1

subsample: 0.5 
n_estimators: 100 
max_leaf_nodes: 
20 
max_depth: 4 
learning_rate: 0.01

subsample: 1 
n_estimators: 1000 
max_leaf_nodes: 
100 
max_depth: 4 
learning_rate: 0.01

subsample: 1 
n_estimators: 1000 
max_leaf_nodes: 
100 
max_depth: 4 
learning_rate: 0.01

subsample: 1 
n_estimators: 1000 
max_leaf_nodes: 
100 
max_depth: 4 
learning_rate: 0.01

subsample: 1 
n_estimators: 1000 
max_leaf_nodes: 
100 
max_depth: 4 
learning_rate: 0.01

XGBoost n_estimators: 700 
max_depth: 4 
learning_rate: 0.01

n_estimators: 700 
max_depth: 4 
learning_rate: 0.01

n_estimators: 700 
max_depth: 4 
learning_rate: 0.01

n_estimators: 600 
max_depth: 5 
learning_rate: 0.02

n_estimators: 600 
max_depth: 5 
learning_rate: 0.02

n_estimators: 600 
max_depth: 5 
learning_rate: 0.02
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Table 6. Model performance for CS predicting across six input configurations using 10 ML 
models. Metrics include R2 (higher is better), RMSE (tC ha −1 yr − 1), and %RMSE (both of 
which are better when lower). CatBoost and RF consistently demonstrate superior perfor-
mance, yielding the best results in configuration 6, with the highest R2, lowest RMSE, and 
lowest %RMSE. Bold values indicate the best performance per metric. Bold values indicate 
the best performance per metric.

Model Configs R2 RMSE (tC ha − 1) %RMSE

CatBoost Conf (1) 0.25 ± 0.10 1.00 ± 0.13 59.11 ± 8.82
Conf (2) 0.54 ± 0.08 0.96 ± 0.09 56.88 ± 6.12
Conf (3) 0.63 ± 0.08 0.89 ± 0.12 52.80 ± 8.18
Conf (4) 0.25 ± 0.13 1.00 ± 0.14 59.21 ± 9.36
Conf (5) 0.62 ± 0.11 0.89 ± 0.11 52.80 ± 7.62
Conf (6) 0.66 ± 0.09 0.86 ± 0.12 50.99 ± 8.01

GBDT Conf (1) 0.21 ± 0.08 1.03 ± 0.13 60.60 ± 8.76
Conf (2) 0.49 ± 0.12 0.99 ± 0.08 58.51 ± 5.63
Conf (3) 0.55 ± 0.12 0.95 ± 0.11 56.22 ± 7.28
Conf (4) 0.24 ± 0.08 1.01 ± 0.13 59.62 ± 8.49
Conf (5) 0.58 ± 0.15 0.92 ± 0.12 54.18 ± 7.99
Conf (6) 0.58 ± 0.13 0.93 ± 0.13 54.85 ± 8.68

KNN Conf (1) 0.20 ± 0.09 1.03 ± 0.13 61.03 ± 8.86
Conf (2) 0.53 ± 0.06 0.97 ± 0.09 57.45 ± 6.22
Conf (3) 0.53 ± 0.06 0.97 ± 0.09 57.45 ± 6.22
Conf (4) 0.06 ± 0.07 1.12 ± 0.08 65.84 ± 5.78
Conf (5) 0.43 ± 0.11 1.04 ± 0.07 61.31 ± 5.19
Conf (6) 0.37 ± 0.15 1.06 ± 0.09 62.38 ± 6.34

MLR Conf (1) 0.18 ± 0.08 1.04 ± 0.09 61.44 ± 6.23
Conf (2) 0.56 ± 0.08 0.95 ± 0.09 56.26 ± 5.85
Conf (3) 0.54 ± 0.08 0.97 ± 0.12 57.18 ± 7.49
Conf (4) 0.14 ± 0.14 1.07 ± 0.08 62.88 ± 5.62
Conf (5) 0.55 ± 0.12 0.95 ± 0.12 56.09 ± 7.62
Conf (6) 0.49 ± 0.16 0.99 ± 0.13 58.55 ± 8.36

MLP Conf (1) 0.15 ± 0.06 1.07 ± 0.11 62.96 ± 7.58
Conf (2) 0.52 ± 0.12 0.98 ± 0.09 58.01 ± 5.55
Conf (3) 0.53 ± 0.09 0.97 ± 0.09 57.14 ± 6.01
Conf (4) 0.02 ± 0.04 1.17 ± 0.10 68.95 ± 6.90
Conf (5) 0.11 ± 0.10 1.17 ± 0.10 68.92 ± 7.03
Conf (6) 0.13 ± 0.13 1.17 ± 0.10 69.14 ± 6.67

RF Conf (1) 0.24 ± 0.09 1.01 ± 0.12 59.53 ± 8.17
Conf (2) 0.53 ± 0.09 0.97 ± 0.09 57.16 ± 6.28
Conf (3) 0.63 ± 0.07 0.89 ± 0.12 52.63 ± 7.87
Conf (4) 0.29 ± 0.08 0.98 ± 0.11 57.63 ± 7.55
Conf (5) 0.65 ± 0.09 0.87 ± 0.11 51.40 ± 7.53
Conf (6) 0.67 ± 0.08 0.85 ± 0.13 50.22 ± 8.27

SVR Conf (1) 0.24 ± 0.09 1.01 ± 0.12 59.53 ± 8.17
Conf (2) 0.54 ± 0.11 0.96 ± 0.10 56.93 ± 6.56
Conf (3) 0.54 ± 0.11 0.96 ± 0.10 56.93 ± 6.56
Conf (4) 0.17 ± 0.13 1.05 ± 0.11 62.02 ± 7.77
Conf (5) 0.42 ± 0.19 1.02 ± 0.09 60.38 ± 6.40
Conf (6) 0.41 ± 0.12 1.06 ± 0.09 62.26 ± 6.39

XGBoost Conf (1) 0.24 ± 0.07 1.01 ± 0.13 59.41 ± 8.46
Conf (2) 0.39 ± 0.15 1.06 ± 0.11 62.74 ± 7.27
Conf (3) 0.57 ± 0.11 0.94 ± 0.12 55.27 ± 7.91
Conf (4) 0.17 ± 0.13 1.05 ± 0.11 62.02 ± 7.77
Conf (5) 0.59 ± 0.13 0.92 ± 0.12 54.18 ± 7.64
Conf (6) 0.59 ± 0.14 0.92 ± 0.14 54.22 ± 9.09

Stackens Conf (1) 0.17 ± 0.11 1.05 ± 0.12 67.89 ± 7.91
Conf (2) 0.46 ± 0.13 0.94 ± 0.14 61.03 ± 7.80
Conf (3) 0.46 ± 0.12 0.94 ± 0.15 61.12 ± 6.90
Conf (4) 0.24 ± 0.13 1.03 ± 0.13 66.90 ± 5.81
Conf (5) 0.54 ± 0.11 0.89 ± 0.10 57.68 ± 7.70
Conf (6) 0.49 ± 0.12 0.92 ± 0.11 59.82 ± 5.61

AVG-Ens Conf (1) 0.12 ± 0.15 1.08 ± 0.10 69.55 ± 6.93
Conf (2) 0.42 ± 0.16 0.96 ± 0.13 62.33 ± 6.70
Conf (3) 0.49 ± 0.12 0.93 ± 0.14 60.01 ± 7.91
Conf (4) 0.26 ± 0.15 1.03 ± 0.16 66.43 ± 8.40
Conf (5) 0.55 ± 0.13 0.89 ± 0.10 57.57 ± 6.75
Conf (6) 0.42 ± 0.17 0.97 ± 0.11 62.46 ± 7.91
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Further gains were observed when GLCM metrics 
were combined with additional predictors. Conf 5 (VIs  
+ GLCM + geomorphology) and Conf 6 (all inputs) gen-
erally yielded the best results across models. CatBoost 

achieved its highest performance in Conf 6 (R2 = 0.65, 
RMSE = 2.77 (tC ha− 1), %RMSE = 53.99%), while RF out-
performed all other models in the same configuration 
(R2 = 0.67, RMSE = 2.73 tC ha− 1, %RMSE = 53.32%). This 

Table 7. Model performance for SDC predicting across six input configurations using 10 ML 
models. Metrics include R2 (higher is better), RMSE (tC ha − 1), and %RMSE (both lower is 
better). CatBoost and RF consistently show superior performance, achieving the best results 
in configuration 6 with the highest R2 and lowest RMSE and %RMSE. Bold values indicate the 
best performance per metric.

Model Configs R2 RMSE (tC ha − 1) %RMSE

CatBoost Conf (1) 0.18 ± 0.13 3.33 ± 0.45 65.10 ± 9.85
Conf (2) 0.51 ± 0.08 3.16 ± 0.33 61.60 ± 7.41
Conf (3) 0.62 ± 0.08 2.89 ± 0.42 56.49 ± 9.01
Conf (4) 0.40 ± 0.12 2.85 ± 0.39 55.61 ± 8.44
Conf (5) 0.63 ± 0.09 2.84 ± 0.33 55.38 ± 7.14
Conf (6) 0.65 ± 0.11 2.77 ± 0.41 53.99 ± 8.62

GBDT Conf (1) 0.14 ± 0.09 3.43 ± 0.38 66.90 ± 8.48
Conf (2) 0.47 ± 0.05 3.27 ± 0.33 63.74 ± 7.55
Conf (3) 0.48 ± 0.15 3.18 ± 0.40 62.09 ± 8.68
Conf (4) 0.32 ± 0.13 3.04 ± 0.41 59.28 ± 8.78
Conf (5) 0.58 ± 0.11 2.95 ± 0.37 57.54 ± 7.80
Conf (6) 0.57 ± 0.13 2.99 ± 0.40 58.36 ± 8.58

KNN Conf (1) 0.16 ± 0.09 3.39 ± 0.43 66.28 ± 9.50
Conf (2) 0.48 ± 0.08 3.23 ± 0.32 63.09 ± 7.32
Conf (3) 0.48 ± 0.08 3.23 ± 0.32 63.09 ± 7.32
Conf (4) 0.04 ± 0.07 3.61 ± 0.27 70.45 ± 6.47
Conf (5) 0.41 ± 0.12 3.34 ± 0.29 65.14 ± 6.98
Conf (6) 0.41 ± 0.12 3.34 ± 0.29 65.14 ± 6.98

MLR Conf (1) 0.12 ± 0.09 3.46 ± 0.32 67.52 ± 7.08
Conf (2) 0.51 ± 0.09 3.15 ± 0.32 61.40 ± 7.14
Conf (3) 0.48 ± 0.09 3.22 ± 0.37 62.79 ± 7.93
Conf (4) 0.30 ± 0.11 3.09 ± 0.34 60.20 ± 7.39
Conf (5) 0.51 ± 0.17 3.10 ± 0.40 60.56 ± 8.59
Conf (6) 0.47 ± 0.15 3.20 ± 0.37 62.50 ± 7.94

MLP Conf (1) 0.15 ± 0.12 3.41 ± 0.50 66.65 ± 10.69
Conf (2) 0.55 ± 0.16 3.33 ± 0.51 64.82 ± 9.41
Conf (3) 0.49 ± 0.16 3.16 ± 0.36 61.72 ± 7.88
Conf (4) 0.03 ± 0.05 3.74 ± 0.33 73.06 ± 7.62
Conf (5) 0.11 ± 0.11 3.74 ± 0.33 72.94 ± 7.77
Conf (6) 0.11 ± 0.11 3.74 ± 0.34 72.95 ± 7.86

RF Conf (1) 0.17 ± 0.12 3.36 ± 0.41 65.51 ± 8.95
Conf (2) 0.50 ± 0.10 3.17 ± 0.33 61.84 ± 7.30
Conf (3) 0.62 ± 0.08 2.90 ± 0.43 56.59 ± 9.12
Conf (4) 0.40 ± 0.12 2.85 ± 0.42 55.68 ± 9.03
Conf (5) 0.64 ± 0.09 2.80 ± 0.37 54.59 ± 8.04
Conf (6) 0.67 ± 0.09 2.73 ± 0.42 53.32 ± 9.04

SVR Conf (1) 0.17 ± 0.09 3.37 ± 0.45 65.90 ± 10.00
Conf (2) 0.50 ± 0.12 3.16 ± 0.33 61.69 ± 7.43
Conf (3) 0.50 ± 0.12 3.16 ± 0.33 61.69 ± 7.44
Conf (4) 0.00 ± 0.11 3.67 ± 0.26 71.58 ± 6.23
Conf (5) 0.43 ± 0.08 3.33 ± 0.38 65.09 ± 8.56
Conf (6) 0.43 ± 0.08 3.33 ± 0.38 65.09 ± 8.56

XGBoost Conf (1) 0.03 ± 0.26 3.73 ± 0.62 72.77 ± 13.14
Conf (2) 0.38 ± 0.17 3.40 ± 0.36 66.39 ± 7.86
Conf (3) 0.52 ± 0.12 3.12 ± 0.43 60.85 ± 9.19
Conf (4) 0.34 ± 0.11 3.00 ± 0.39 58.57 ± 8.61
Conf (5) 0.58 ± 0.10 2.97 ± 0.32 57.86 ± 7.08
Conf (6) 0.57 ± 0.11 3.00 ± 0.40 58.67 ± 6.40

Stackens Conf (1) 0.37 ± 0.10 3.17 ± 0.35 68.11 ± 8.50
Conf (2) 0.43 ± 0.12 3.08 ± 0.43 66.36 ± 6.70
Conf (3) 0.48 ± 0.09 3.00 ± 0.33 64.52 ± 8.86
Conf (4) 0.24 ± 0.17 1.03 ± 0.40 66.90 ± 7.50
Conf (5) 0.52 ± 0.11 2.92 ± 0.36 62.83 ± 8.86
Conf (6) 0.45 ± 0.15 3.03 ± 0.43 65.66 ± 6.80

AVG-Ens Conf (1) 0.14 ± 0.06 3.39 ± 0.26 72.88 ± 7.65
Conf (2) 0.33 ± 0.05 3.23 ± 0.40 69.40 ± 8.45
Conf (3) 0.52 ± 0.15 2.92 ± 0.37 62.86 ± 7.47
Conf (4) 0.35 ± 0.17 3.20 ± 0.34 68.89 ± 6.75
Conf (5) 0.48 ± 0.05 2.99 ± 0.28 64.39 ± 8.05
Conf (6) 0.48 ± 0.08 2.99 ± 0.32 64.37 ± 6.25
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highlights the strength of these models in leveraging 
diverse feature sets to enhance prediction accuracy. 
XGBoost and GBDT also benefited from GLCM integra-
tion, achieving their highest R2 in Conf 5 and 6, although 
XGBoost showed a slight decline in Conf 6, suggesting 
sensitivity to high-dimensional inputs.

Other models, including KNN, SVR, and MLR, showed 
moderate improvement with adding GLCM metrics, par-
ticularly in Conf 2. However, gains plateaued or declined 
in more complex configurations, reflecting their limited 
capacity to exploit high-dimensional data fully. MLP, in 
contrast, showed inconsistent results, with only marginal 
improvement in Conf 2 and poor performance in subse-
quent configurations, possibly due to overfitting or 
inadequate model tuning. Ensemble approaches also 
benefited from the inclusion of GLCM features. The 
stacking ensemble showed progressive improvement 
up to Conf 5 (R2 = 0.52), while the averaging ensemble 
peaked in Conf 3 (R2 = 0.52), indicating that the com-
bined strength of multiple base learners can effectively 
utilize GLCM-derived texture information.

Overall, these findings emphasize the critical role of 
GLCM metrics, particularly when combined with geo-
morphological and weather variables, in enhancing 
model performance for CSE and SDC estimation. Conf 6 
consistently emerges as the most effective setup across 
all models, with RF leading the performance rankings. 
This suggests that ensemble-based tree models, espe-
cially RF and CatBoost, are well-suited to handle com-
plex, heterogeneous feature sets for environmental 
prediction tasks.

To further evaluate the performance, we implemen-
ted a regression plot to show the relationship between 
actual data and model predictions. Figures 5 and 6 
illustrate this relationship for the target variables using 
the CatBoost model for Conf 5 and 6. These figures 
include marginal distribution bar charts to provide addi-
tional context. The thin diagonal line represents 
a perfect fit, while the thicker line indicates the regres-
sion line from the model. As demonstrated in the figures, 
our results support the accuracy and reliability of the 
model predictions.

Figure 7 shows Jackknife Resampling and Error Bars, 
in which the predicted versus reported values for CSE 
and SDC generally align with the perfect prediction line, 
demonstrating the model’s accuracy. However, the 
observed deviations, particularly at higher reported OC 
values, accompanied by larger error bars, suggest 
increased uncertainty and potential areas for model 
refinement. This interpretation underscores the impor-
tance of considering prediction uncertainty in environ-
mental modelling, guiding future improvements to 
enhance model reliability and performance (Beven  
2018). 

5.1. Comparative performance analysis

An ANOVA test was performed to evaluate the statistical 
significance of the differences between configurations, 
followed by Tukey’s HSD analysis (Table 8), using the 
CatBoost model as an example to estimate CSE across 
various configurations.

Figure 5. Scatter plots with marginal histograms showing the relationship between real and predicted values for the target variable 
CSE (tC ha− 1 yr− 1) using the CatBoost model with two different feature configurations: conf (5) (left) and Conf (6) (right). Both models 
exhibit a positive correlation, with Conf (6) showing slightly better alignment and narrower prediction intervals, suggesting improved 
predictive performance.
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For R2, the ANOVA test revealed significant differ-
ences across the configurations (F(5, 12) = 24.303, p <  
0.001). When comparing Conf 1 (VIs only) to Conf 3 
(VIs + GLCM Metrics), Tukey’s HSD test indicated 
a significant increase in R2, with a mean difference 
of 0.33, suggesting that the inclusion of GLCM 
metrics significantly enhances the model’s explana-
tory power. Similarly, when comparing Conf 4 (VIs +  
geomorphological + weather parameters) with Conf 6 
(which additionally includes GLCM metrics), there was 
a significant improvement in R2, with a mean 

difference of 0.03, indicating the positive impact of 
GLCM metrics on model performance. However, the 
comparison between Conf 4 and Conf 5 (GLCM 
Metrics + geomorphological + weather parameters) 
showed no significant difference in R2. For RMSE, 
significant differences were also observed (F(5, 12) =  
7.980, p < 0.002). Tukey’s HSD test revealed that add-
ing GLCM metrics in Conf 3 reduced RMSE compared 
to Conf 1, with a mean difference of −0.17, demon-
strating improved predictive accuracy. Similarly, com-
paring Conf 4 with Conf 6, including GLCM metrics, 

Figure 6. Scatter plots with marginal histograms showing the relationship between real and predicted values for the target variable 
SDC (tC ha−1) using the CatBoost model with two different feature configurations: conf (5) (left) and Conf (6) (right). Both models 
exhibit a positive correlation, with Conf (6) showing slightly better alignment and narrower prediction intervals, suggesting improved 
predictive performance.

Figure 7. Predicted vs. Reported CSE (left) and SDC (right) with jackknife error bars. Scatter plots show model predictions against self- 
reported scores for CSE and SDC. Vertical error bars represent jackknife-estimated uncertainty. The dashed diagonal line indicates 
perfect prediction. Error bars illustrate confidence in predictions and highlight variability across individuals.
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led to a further reduction in RMSE, with a mean 
difference of −0.12. However, there was no significant 
difference between Conf 4 and Conf 5 for RMSE.

These findings confirm that the integration of GLCM 
metrics, particularly in Conf 3 and Conf 6, provides 
superior performance in estimating carbon stock, as 
evidenced by improved R2 and reduced RMSE. 
Therefore, these configurations should be preferred for 
more accurate carbon stock estimation.

5.2. Model performance and overfitting analysis

We applied thorough hyperparameter tuning and 5-fold 
cross-validation across all models to ensure robust and 
generalizable predictions. Figure 8 presents the sensitiv-
ity of CatBoost performance to tree depth and the num-
ber of boosting iterations for both prediction targets: CS 
(right) and SDC (left). In both cases, optimal R2 values 
were achieved at moderate tree depths (around 
depth 9), with only a slight decline in performance 
beyond this point – a common indicator of potential 
overfitting. However, early stopping during training 

helped mitigate this risk, as seen in the controlled per-
formance across iteration counts.

Figure 9 illustrates similar sensitivity analyses for RF 
models, focusing on tree depth and the number of 
estimators. These models displayed relatively stable per-
formance, with R2 values plateauing beyond certain 
depths and estimator thresholds. This consistency 
reflects RF’s inherent robustness to overfitting, especially 
when used with cross-validation and limited maximum 
depth.

Overall, the combination of systematic hyperpara-
meter optimization, early stopping, and cross- 
validation contributed to well-tuned models with strong 
generalization capacity, as reflected in the smooth per-
formance trends shown in the figures.

5.3. SHAP analysis for feature importance and 
model interpretability

In this subsection, SHAP was applied to improve the 
interpretability of the XGBoost, CatBoost, and Gradient 
Boosting models, focusing on configuration Conf 6 for its 

Figure 8. Sensitivity of CatBoost model performance to tree depth and number of iterations for SDC (left) and CSE (right) prediction. 
For both targets, peak performance is observed around depth 9, with R2 declining beyond this point, suggesting potential overfitting. 
Iteration analysis shows rapid early improvement, followed by performance degradation after ~ 50–100 iterations.

Table 8. Tukey’s HSD post-hoc analysis for model configurations.
Metric Configuration Comparison Mean Difference p-value Significant (p < 0.05)

R2 Conf (1) vs Conf (3) 0.33 0.018 Yes
R2 Conf (4) vs Conf (5) 0.01 0.884 No
R2 Conf (4) vs Conf (6) 0.03 0.041 Yes
RMSE Conf (1) vs Conf (3) −0.17 0.039 Yes
RMSE Conf (4) vs Conf (5) −0.05 0.732 No
RMSE Conf (4) vs Conf (6) −0.12 0.049 Yes
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simplicity. To achieve a comprehensive understanding, 
three types of SHAP plots were used: the beeswarm plot, 
the force plot, and the heatmap. The SHAP beeswarm 
plot (Figure 10) visualizes the spread and impact of 
features across all predictions, highlighting which fea-
tures have the most influence and how their values 
(from low to high) affect model outputs. The SHAP 
force plot (Figure 11) shows how individual features 
contribute to specific predictions, providing insights 
into the model’s behaviour at the instance level. 
Meanwhile, the SHAP heatmap (Figure 12) aggregates 
these contributions across the dataset to reveal broader 
patterns and trends in feature importance.

In the SHAP beeswarm plots (Figure 10), feature impor-
tance was compared across two configurations, CSE and 
SDC, for all three models. For XGBoost, in the CSE config-
uration, features such as AVG_variance, AVG_mean, and 
NDII_median were the most impactful, with higher values 
generally leading to higher model outputs. In the SDC 
configuration, AVG_mean, NDII_max, and AVG_variance 
became more dominant. Similarly, the CatBoost model 
for CSE emphasized AVG_mean, AVG_variance, and 
NDII_median, while SDC focused on AVG_mean, 
AVG_variance, NDII_max, and SD_mean. The Gradient 
Boosting model showed that in CSE, features like 
AVG_mean, NDII_max, and GNDVI_max had a strong influ-
ence, whereas in SDC, AVG_mean, NDII_max, and 
SD_mean were particularly important.

Figure 11 presents SHAP force plots for both CSE and 
SDC configurations, using instances whose feature 
values are close to the dataset’s average. These plots 
offer detailed insights into how individual features 
push or pull model predictions. In subplot (a), for the 
CSE configuration with the XGBoost model, GNDVI_max 
emerges as the most influential feature, positively push-
ing the prediction higher. Meanwhile, features like 
AVG_variance, AVG_mean, SD_entropy, and eleva-
tion_stdev contribute negatively, pulling the prediction 
downward. Subplot (b), corresponding to the SDC con-
figuration, shows that features such as SD_homogeneity, 
SD_entropy, NDII_max, and GNDVI_max collectively 
push the prediction to a higher value, while 
AVG_mean, AVG_variance, and aspect_degree_stdev 
have a lowering effect. In subplot (c), similar to earlier 
observations, GNDVI_max remains the most impactful 
positive contributor for the CatBoost model in the CSE 
configuration, whereas AVG_variance, AVG_mean, 
SD_entropy, and elevation_stdev again act as suppres-
sors. Subplot (d), representing CatBoost in the SDC set-
ting, highlights SD_homogeneity, SD_entropy, 
NDII_max, and GNDVI_max as positive drivers of the 
prediction, while AVG_mean, AVG_variance, and 
aspect_degree_stdev work to decrease the output.

For the Gradient Boosting model, subplot (e) shows 
that features such as SD_dissimilarity, SD_mean, and 
NDII_max have strong positive impacts in the CSE 

Figure 9. Sensitivity of Random forest model performance to tree depth and number of estimators for SDC (left) and CSE (right) 
prediction. Performance stabilizes around moderate tree depth, with marginal gains beyond ~ 100 estimators, indicating robustness 
and minimal risk of overfitting.
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configuration, significantly pushing the prediction 
upward. However, slope_percentage_mean and slope_-
percentage_max counterbalance this by pulling the pre-
diction down. Finally, in subplot (f) for the SDC 
configuration, features including SD_contrast, 
GNDVI_max, NDII_max, AVG_variance, and NDVI_mean 
prominently elevate the model’s prediction. The only 
feature exerting a notable negative effect is 
AVG_mean, which pulls the prediction downward.

Figure 12 displays SHAP heatmaps for Conf 6, provid-
ing a detailed view of how feature impacts vary across 
individual instances for both the CSE and SDC config-
urations. In the CSE heatmap (left), features such as 
AVG_variance, AVG_mean, and NDII_median show sub-
stantial influence across the dataset, with some 
instances where these features consistently push the 
model output higher (shown in red) and others where 
they pull it lower (shown in blue). Additionally, features 

Figure 10. SHAP beeswarm plots for Conf 6 comparing the feature impacts on CSE (left) and SDC (right) across three different models. 
Subplots (a, b) correspond to XGBoost, (c, d) to CatBoost, and (e, f) to Gradient Boosting. SHAP values quantify the contribution of each 
feature to the model’s output. The colour indicates the feature value (red = high, blue = low), and the horizontal spread reflects the 
magnitude and direction of each feature’s impact.
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like GNDVI_max and NDII_max also play important but 
more variable roles, indicating that their contributions 
depend on the specific instance. In the SDC heatmap 
(right), AVG_mean emerges as a strong and consistent 
driver, often pushing the model’s predictions upward. 
Other significant features include NDII_max, 
AVG_variance, and NDII_median, which, although influ-
ential, show more variability in their effects across differ-
ent samples.

In the CatBoost model’s heatmaps, shown in subplots 
(c) and (d), a similar trend is observed. In CSE (subplot c), 
AVG_mean, AVG_variance, NDII_median, and 
GNDVI_max dominate the feature impacts, with 
AVG_mean and NDII_median particularly standing out 

for their strong positive influence in later parts of the 
dataset. For the SDC configuration (subplot d), 
AVG_mean and NDII_max again play leading roles, 
while features like SD_entropy and SD_variance contri-
bute more sporadically, affecting specific instances 
rather than consistently across all cases. In the Gradient 
Boosting model, illustrated in subplots (e) and (f), 
AVG_mean, AVG_variance, and NDII_median remain 
consistently influential for CSE, while spectral indices 
like GNDVI_max and NDII_mean also contribute notably, 
especially in the latter instances. In the SDC configura-
tion (subplot f), AVG_mean and NDII_max continue to 
dominate, and features such as GNDVI_stdDev, 
SD_dissimilarity, and terrain-related metrics like 

Figure 11. SHAP force plots for Conf 6, illustrating the SHAP values for CSE and SDC. Subplots (a, b) correspond to XGBoost, (c, d) to 
CatBoost, and (e, f) to Gradient Boosting. These plots show how individual features contribute to shifting the model’s prediction from 
the base value to the final output. Red segments indicate features that increase the prediction, while blue segments represent features 
that decrease it, with segment width reflecting the magnitude of impact.
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slope_percentage_mean and slope_percentage_stdev 
offer additional explanatory power.

Overall, this SHAP analysis highlights the critical role 
of GLCM features, especially AVG_mean and 
AVG_variance, in accurately predicting OC in forest 

inventories. Offering an explainable framework deepens 
our understanding of how texture-based metrics from 
remote sensing data can guide sustainable forest man-
agement practices, with significant implications for car-
bon sequestration and climate change mitigation efforts 

Figure 12. SHAP heatmaps for Conf 6, illustrating SHAP values for CSE (left) and SDC (right). Subplots (a, b) correspond to XGBoost, 
(c, d) to CatBoost, and (e, f) to Gradient Boosting. These heatmaps display the contribution of each feature across multiple samples, 
where colour intensity represents the magnitude and direction of the SHAP values, highlighting patterns of feature influence across 
the dataset.
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in Italy’s forests. The most influential GLCM metrics in 
predicting OC include `AVG_mean`, `AVG_variance`, 
`SD_entropy`, and `SD_homogeneity`. These metrics 
are key to the model’s predictions, reflecting vital 
aspects of forest structure and health, and their consis-
tent importance underscores the model’s effectiveness 
in leveraging these texture-based metrics for accurate 
forest inventory assessments.

6. Discussion

This study contributes to the growing body of research 
on the application of GLCM metrics in remote sensing 
and forestry, particularly for estimating CSE and SDC. 
Although GLCM metrics are well-established for evaluat-
ing the above-ground biomass of living trees, their appli-
cation in estimating CSE and SDC in forested areas 
remains relatively underexplored. The RF model exhib-
ited superior performance in estimating CSE (R2 = 0.67, 
RMSE = 0.85 (tC ha −1 yr − 1), %RMSE = 53.22) and SDC 
(R2 = 0.67, RMSE = 2.73 (tC ha − 1), %RMSE = 50.22), sur-
passing previous studies, including those by Fasihi et al. 
(2024), Safari and Sohrabi (2016), Uniyal et al. (2022), and 
others (Du et al. 2010; Frazier et al. 2014; Labrecque et al.  
2006). These earlier studies employed machine learning 
models such as Random Forest and XGBoost, which 
generally reported higher RMSE values and comparable 
or lower R2 scores. However, direct comparisons 
between studies remain challenging due to differences 
in forest conditions, sampling methods, and modelling 
approaches, as noted by prior research (Safari et al. 2017; 
Zandler, Brenning, and Samimi 2015).

In addition, the results support both Hypothesis 2 
(H2) and Hypothesis 3 (H3). For H2, the fusion of VIs 
and GLCM metrics (Conf 3) consistently outperformed 
models using VIs alone (Conf 1) or GLCM metrics alone 
(Conf 2). This suggests that the complementary nature of 
spatial texture information from GLCM and spectral data 
from VIs enhances carbon estimation accuracy. 
Regarding H3, including geomorphological and weather 
parameters alongside GLCM metrics (Conf 5 and 6) 
further improved model performance compared to 
using GLCM metrics alone (Conf 2). This highlights the 
significant role of environmental factors, such as geo-
morphology and weather conditions, in carbon 
dynamics within forest ecosystems. Therefore, integrat-
ing these variables with GLCM metrics enhances the 
accuracy of OC estimations.

The discussion of key GLCM features highlights their 
critical role in estimating OC in forest inventories. The 
analysis identifies four primary features: AVG_mean, 
AVG_variance, SD_entropy, and SD_homogeneity, each 
of which provides insight into forest structure and its 

relationship to carbon sequestration. The metric 
AVG_mean represents the average intensity of pixel 
values, which correlates with denser forests that seques-
ter more carbon due to greater biomass (Immitzer, 
Vuolo, and Atzberger 2016). Similarly, AVG_variance cap-
tures spatial variability, which reflects heterogeneity in 
vegetation structure, often an indicator of mature, car-
bon-rich forest stands (Immitzer, Vuolo, and Atzberger  
2016). SD_entropy measures the randomness or disorder 
in texture, providing information on structural complex-
ity, which is associated with diverse vegetation layers 
and increased carbon storage (Ranjan and Parida 2020). 
SD_homogeneity assesses the uniformity of pixel pairs; 
lower homogeneity suggests structural irregularity typi-
cally found in ecologically rich and carbon-dense forests 
with abundant standing deadwood (Ranjan and Parida  
2020). Together, these features offer a nuanced view of 
forest structure that goes beyond spectral data alone. By 
explicitly linking each GLCM metric to specific forest 
characteristics influencing carbon dynamics, this deeper 
interpretation enhances the transparency and ecological 
relevance of the model outputs. These findings support 
Hypothesis 1 (H1), as they demonstrate that local varia-
bility in tree height and texture patterns, particularly as 
measured by GLCM metrics, provides valuable informa-
tion for estimating CSE and SDC. The findings under-
score the importance of these features in understanding 
forest ecosystems and their role in global climate change 
mitigation.

The study highlights the importance of integrating 
GLCM metrics into forestry management to enhance the 
accuracy and efficiency of OC estimation in forests. This 
approach enables more precise estimates of carbon 
sequestered by living trees and stored in dead trees, 
which is crucial for informed decision-making and sus-
tainable forest management. By capturing complex spa-
tial patterns linked to carbon dynamics, forestry 
managers can better allocate resources, focusing on 
areas with high OC potential or vulnerable ecosystems. 
In addition, an accurate estimation of the amount of 
standing deadwood can help forest managers improve 
efficiency in biodiversity conservation, given the crucial 
role of deadwood in supporting the diversity of multiple 
taxa (Parisi et al. 2018). Furthermore, the use of explain-
able models, like white box models, increases transpar-
ency, helping stakeholders understand key factors 
influencing carbon storage. This facilitates targeted 
interventions, such as reforestation or selective logging, 
to optimize carbon storage and maintain ecosystem 
health. While this study presents a novel and explainable 
machine learning approach to estimate OC in living and 
dead trees, several complexities and limitations must be 
acknowledged. First, the use of ten different machine 
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learning models and six data configurations introduces 
computational complexity. Model training, hyperpara-
meter tuning, and validation across such a broad experi-
mental design require time and resources. Second, 
although GLCM metrics offer valuable spatial texture 
information, they are sensitive to image resolution, 
noise, and preprocessing steps, which can affect the 
stability of feature extraction across different forest 
types or sensor platforms. Moreover, while SHAP values 
enhance model interpretability, they may not fully cap-
ture the interactions between highly correlated features, 
particularly in high-dimensional input spaces combining 
VIs, GLCM, and environmental parameters.

7. Conclusions

This study highlights the significant role of Gray-Level 
Co-occurrence Matrix (GLCM) metrics in enhancing 
the accuracy of organic carbon (OC) estimation 
through remote sensing. By integrating texture- 
based features with machine learning models, parti-
cularly CatBoost and RF, high levels of precision were 
achieved in predicting carbon storage, offering valu-
able insights for forest management and climate 
change mitigation efforts. A deeper analysis of indi-
vidual GLCM features revealed their relevance to OC 
estimation: features such as contrast, homogeneity, 
and entropy effectively capture spatial heterogeneity, 
vegetation structure, and surface complexity – factors 
closely associated with organic matter distribution. 
These features enhance model sensitivity to ecologi-
cal variations that influence carbon dynamics. The 
integration of SHAP values within a white-box mod-
elling framework further strengthened the interpret-
ability of results, offering transparency into the 
contributions of each variable. This is essential for 
building trust in data-driven decision-making pro-
cesses. While the study successfully demonstrates 
the potential of combining remote sensing with 
explainable AI, it is limited by the lack of detailed 
soil data, which is critical for a comprehensive under-
standing of carbon sequestration. Future research 
should aim to incorporate soil characteristics to refine 
model performance and ecological accuracy. 
Moreover, future work could explore the use of 
Graph Neural Networks (GNNs) to model spatial and 
structural relationships in forest ecosystems. GNNs 
offer a promising approach to represent complex 
spatial dependencies and interactions within forest 
and soil environments, potentially improving the 
robustness of carbon estimation frameworks. In addi-
tion, we plan to design and evaluate a compact deep 
learning model tailored for OC estimation. This 

approach will prioritize simplicity, efficiency, and suit-
ability for real-world, resource-constrained 
applications.
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